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Abstract: In this paper, we prove the existence and uniqueness of
a common fixed point in which the pair of maps satisfy the E.A.
like property. This generalizes the result of Bhingare et al. (2013)
and can be useful for researchers seeking to establish a common
fixed point for rational expression. We also define a new class of
Sfunction y.
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l. INTRODUCTION

In 1975, Kromosil and Michalek initially introduced the idea
of fuzzy metric space[1]. The modified Continuoust-norm
technique was first presented in 1994 by George and
Veeramani[7]. Many writers and researchersused a number
of innovative concepts—compatible mapping, weak
compatible mapping, R-weakly Computing mapping, and
CLR-property, among others—to generate new insights on
fuzzy metric space in diverse ways. In 2002, Sushil Shama

[10] established several common fixed-point theorems and
defined the property E.A. forthe first timeasa novel concept
in fuzzy metric spaces under strict contractive conditions.

Many writers and scholars created new in 2013, K.
Wadhawa et al. introduced the original idea of the E.A. like
property in fuzzy metric space [4]. This characteristic is
essential for guaranteeing that one does not require range
subspace proximity, mapping continuity, or the
completeness of the entire space. Numerous domains, such
ascommunication, applied sciences, stability theory, control
theory, neural network theory, image processing, and
medical sciences.

This work presents the proof of a few common fixed-point
theorems for new combination six and for four mappings
through weakly compatible and common E.A.-like
properties in a fuzzy metric space.

1. PRELIMINARIES

Definition 2.1[16] A binary operation *: [0,1] x [0,1] - [0,1] is a continuous t-norm if * satisfying the condition:

(1) *is commutative and associative.
(2) *is continuous.

3 a*x1=a,va€e[0,1]

(4) axb <c*d,whenever a<cand b <d forVab,c,d €[0,1]

Definition 2.2[15] A 3-tuple (X, M,*) is said to be Fuzzy Metric space if X is an arbitrary set, * is a continuoust-norm and
M is a Fuzzy set on X? x [0,0) satisfying the following conditions:V x, 4,z € X s,t >0

1) M, y,2) >0
(@ M(x,y,t) =1forall t>0iff x =y.
() Mx,y,t) = M(z,x,t)

4) MQx,y,t;) «M(z,3,t,) < M(x,3,t;, +t,)

Vx,4,2 € Xand t,,t,,> 0

(5) X(x,4,%):[0,0] - [0,1] is left continuous.

Example 2.3(Induced fuzzy metric space [15]): Let (X,d) be a metric space. Denote a * b = ab forall a,b € [0,1] and

let M be a fuzzy set on X? x [0, ) defined as follows:

m(x,y,t) =

t

t+d(xy)

Definition 2.4[4] Two self mapping A and B on a fuzzy mapping (X,M,x) are said to be compatible if
lim M(ABx,,BAx,,t) = 1 for all t > 0 whenever {x,}is a sequence in X such that lim Ax, =

n-oo

lim Bx,, = u, forallu € X

n-oo
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Definition 2.5[13] Two self-mapping A and B on a fuzzy mapping (X, M,*) are said to be a weakly compatible if they
commute at their coincidence point that is for Vu € X,Au = Bu implies that ABu =
BAu forallt >0

Definition 2.6[4] Two self-mapping A and B on a fuzzy mapping (X, M,+) are said to be Satisfy E.A property if their exist
a sequence {x,}in Xsuch that

lim Ax,, = lim Bx,, = u, forallu e X
n-—-oo

n—oo

Definition 2.7[4] Let A, B,S and T be a self-mappingof a Fuzzy Metric space (X, M,+) then (A,S) and (B,T) said to satisfy
Common E.A like property if their exist two sequence {x,}and {y,} in X such that lim Ax, =
n-—-oo

lim Sx,, = lim By, = limTy, = 3, Where z € S(X) N T(X) or 3 € A(X) N B(X)
n—oo n—oo

oo
Lemma 2.8[5] (X, M,*) is non decreasing function for all x, 4,z € X
The following definition and result are define Mishra[5].
Lemma 2.9[4] Let(X, M,*) be a Fuzzy Metricspace if their exist h € (0,1) such that

M(x,4,ht) = M(x,y,t) then x = y and ,h € (0,1),t > 0 forall x,y € X
Main Result

Theorem 3.1: Let 4, B, S, T, P and Q be a self mapping of a fuzzy metric space (X, M,*) satisfying the following
conditions:

(i) P(X) c ST(X),Q(X) € AB(X);

(i) AB = BA,ST =TS,PB = BP,QT =TQ;

(i) Either AB or P is continuous;

(iv) (P,AB) and (Q, ST) are weakly compatible.
(v) Pair (P, AB) and (Q, ST)follows E.A Property.
(vi) Vx,y,z € xand t > 0.

M(ABx,STy,t), M(Px,ABx,t), M(Qy, STy, t),)}

M(Px,Qy,t) = p {Max ( M(Px, STy, t)

Where 7:[0,1] - [0,1] is continuous function such that p(t) >tfor each0 <t < 1,p(0) =0andp(1) =
1then A4,B,S, T, P and Q have a unique common fixed point.
Proof: Since (P, AB) and (Q, ST) satisfying common E.A like properties then there exist two sequences {x,,} and {y, } in
X such that lim Px, = lim ABx, = lim Qy, = lim STy, =z.

n—-oo n—oo n— oo n—oo
Where ,z € AB(X) nST(X) or ze P(X) n Q(X).
Let z € AB(X) n ST(X) and lim Px,, =z € AB(X) then z = ABu , where x € X.

n—-oo

To Prove, Pu = ABu
Putx = u and y = y, in inequality (vi)

M(ABu,STy,,t), M(Pu, ABu,t), M(Qy,, ST y,, t),)}

>
M (Pu, Qyy, ) 2 p{Max< M(Pu, STy, t)

M(Pu,z,t), M(Pu, Pu,t), M(z, z, t),)}

>
M(Pu,z,t) > p{Max ( M(Pu,z,t)

M(Pu,z,t), 1,1,)}

M(Pu,z,t) 2 P{M“" ( M(Pu, z,t)

M(Pu,zt) > p(1) =1

This implies that Pu = zi.e Pu = z = ABu
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Since (P, AB) is weakly compatible then Pz = PABu = ABPu = ABz
Now, we claim that Pz =z

Putx =zand y =y, in(vi)

M(ABz,STy, ,t),M(Pz,ABz,t),M(QQy, , STy, ,t),)}
>
M(Pz,Qy, 0 2 p{Max< M(Pz,STy, )

M(Pz,z,t),M(Pz,Pz,t),M(z, z, t),)}

>
M(Pz,z,t) > P{Max ( M(Pz,z,1)

M(Pz,z,t), 1,1,)}
M(PZ,Z, t)

M(Pz,z,t) >p {Max (
M(Pz,z,t) 2r(1) =1
This implies that Pz = zi.e Pz = z = ABz
Again putx =Bz and y =y, in (vi)

M(ABBz,STy, ,t),M(PBz,ABBz,t),MQy, ,STy,, t),)}
>
M(PBz,Qy, ,0) —p{Max< M(PBz, STy, ,t)
Taking limit n — oo and also, AB = BA,PB = BP
So we get, P(Bz) = B(Pz) = Bz and AB(Bz) = BA(Bz) = B(ABz) = Bz

M(Bz z,t),M(Bz,Bz,t),M(z, z, t),)}

>
MBz,20 = p {Max ( M(PBz,z,t)

M(Bz,zt), 1,1,)}

>
M(Bz,zt) 2 p {M“"< M(Bz,z1)

M(Bz,z,t) =2 p(1) =1

This implies that Bz = zthen ABz =z = Az =z
Therefore Az = Bz = Pz = z.

Again, Let z € ST(X) forsome v € X then z = STv
Now to Prove, Qv = STv

Put x = x,, and y = vin inequality (vi)

M(AB x,, ,STv,t),M(Px, ,ABx, ,t),M(Qv, STv, t),)}

>
M(Px,,Qu,t) = p {MaX< M(Px,,STv,t)

M(z,z,6),M(z,z,t),MQv, z, t),)}

M(z,Qv,t) 2 P{Max( M(z,z,1)

1,1,M(Qu, zt),
1vzt )}

M(z,Qu,t) = p {Max (
M(z,Qu,t) = p(1) =1
This implies that Qv =z = Qv = zSTv

Since (Q, ST) is weakly compatible then Qz = QSTv = STQv = STz
Now to Prove Qz = z then

Putx = x,, and y = zin inequality (vi)

M(AB x,,,STz,t),M(Px,, ,ABx, ,t),M(Qz, STz, t) )}

>
M(Px,,Qzt) = p {Max( M(Px, ,STz,t)

M(z,Qz,t),M(z,z,t),M(Qz, Qz, t),)}

M(z,Qzt) 2 p{Max( M(z,Qz,1)
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Ml on D)

M(z, Qz,t) = p{Max(
M(z,Qz,t) =p(1) =1

This implies thatQz =z = Qz=2z= STz
Putx =x, andy =Tzin (vi)

M(ABx,, ,STTz,t),M(Px,,,ABx, ,t), M(QTz,STTz, t),)}
MPx,,QT20) 2 p{Max ( M(Px,,STTz, ©)
Since Q(Tz) =T(Qz) =Tz
ST(Tz) =TS(Tz) = T(STz) =Tz

Mz, Tz, t), M(z,2,t), M(Tz, Tz, t))}

>
M(z,Tzt) = p {Max( M(z,Tz,t)

M(z, Tz t), 1,1,)}
M(z,Tz,t)

M(z,Tzt) > r{Max(
M(z,Tz,t) =2p(1) =1

This implies thatTz =z = Tz=2z=STz= Sz
Therefore Tz = Qz = Sz = z.

Hence Az = Bz=Tz=Sz=Qz= Pz = z.

Hence 4, B,S, T, P and T have a unigue Common Fixed Point.

Uniqueness: Suppose z, and z, are two common fixed points of 4, B, S, T, P and Twith z, # z, then from (vi)

M(ABz,,STz, ,t),M(Pz,,ABz,,t),M(Qz, ,STz, ,t),)}

>
M(Pz,Q2,,8) 2 p {Max ( M(Pz,,STz,,t)

M(lezz ;t),M(Zl;le t), M(Zz 123, t);)}
M(z,,z,,t)

M(z,,z,,t) =p {Max <
M(z,, 2, ,t) = p{Max(M(z,,2,,0))}

M(z,,2z,,8) =p(M(z,2,,0)) > (M (2,2, , 1))
This is contradiction.
Hence, z, = z, .
Remark * let us we define new class of ¥ as follows.

Let ¢ be the class of all mapping ¥ : [0,1] - [0,1] such that

(@) 1 is non-decreasing and lim ¥ *(b) = 1,v b € (0,1];

() ¥(®b) > b,vb e (0,1);

© @ =1;
Example: Define 1:[0,1] - [0,1] by (") = 1'2+_r1 ,vp € [0,1],
PR = 2 90 = @) = i pelol.

lim Y"() =—2—— =1, vr € [0,1]

n-»oo "-1)r+1

Clearly, () >r and (1) =1, vr € [0,1]

ISSN: 2349-4689
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0) (P,N)and (G, H) Satisfying common E.A like properties.
(ii) (P,N)and (G, H) are weakly compatible.

w(M(Nx, Hy,t)), w(M(Nx, Gy, 2t) ), w(M(Px, Hy,t)),
(iii) M(Px,Gy,t)Zl/J{ ( y.0)ml y.20),w( y.0)
w(MWNx, Px, 1)),

Vx,y EXand t >0

then P,G,N and H have a Common Fixed Point.
Proof: Since (P, N)and (G, H) Satisfying common E.A like properties then there exist two sequences {x,} and {y, } in X
such that lim Px,, = lim Nx,, = lim Gy, = lim Hy, = z.

n-—-oo n—oo

n— oo n—- oo

Where ,z € N(X) nT(X) orz € P(X) n B(X)
Letze N&X) n H(X) and lim Px,, =z € N(X) then z = Nu ,where x € X
n—-oo

To Prove, Pu= Nu
Putx = uand y = y, in (iii)

@(M(Nu, Hy,, 1)), w(M(Nu, Gy,, ), w(M(Pu, Hy,, ) ),}

M(Pu, Gy,, ht) > ¢’{ w(M(Nu, Pu,t))

Mz > ¢ {w(M(z, z, t)),z;((l\]‘//l]((zz, 21;5)2333(1\/1@“'2’ t)),}

oo 0T

by using remark * Properties then we get
MPu,z ht) = ¢{1,1,M(Pu,zt),M(z,Pu,t),1}
M(Pu,z,kt) = M(Pu,z,,t)
By lemma 2.9,weget Pu = zi.e Pu =z = Nu
Since (P, N) is weakly compatible then Pz = PNu = NPu = Nz

Again, lim Gy, =z € H(X) then z = Hv
n—oo

Now to Prove, Hv = Gv
Putx =x, and y = v in (iii)

w(M(an,Hv, t)), w(M(an,Hv, t)), w(M(an,Gv, t))}

M(Px,,Gv,ht) 24’{ w(M(Nx,,Px,,t)

w(M(z,z,0),w(M(z, 6v,1)), w(M(z, 2 t)),}

M(z,Gv, ht) = ¢{ w(M(z z t))

(), w(M(z,6v, D), o) ,}
@ (1)

M(z, Gv, ht) = ¢>{
by using remark * Properties then we get
M(z,Gv, kt) = ¢p{1,M(z,Gv,t),1,1}
Mz, Gv, kt) =M (z, Uv,t)
By lemma29,weget z=Gvi.e Gv = z = Hv
Since (U, H) is weakly compatible then Gz = GHv = HGv = Hz

Now to Prove Pz = z then
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Putx =z and y = y, in (iii)

w(M(Nz, Hy,, 1), w(M(Nz, Gy,, ), w(M(Pz,Hy,, t)),}

M(Pz, By,, ht) > d’{ w(M(Nz, Pz,t))

w(M(Pz, z, t)), w(M (Pz, z, t)), w(M(PZ, z,t) ),}
w(M(Pz,Pz,t))

M(Pz,zht) = ¢{

M(Pz,z, ht) = d{ ZD'(M(PZ,Z, t)) , ZD'(M(PZ, Z, t)), w(M(PZ, Z, t)), w(l)}

by using remark * Properties then we get
M(Pz,z, ht) = d{ M(Pz,z,t),M(Pz,z,t), M(Pz,z,t), 1,1}
M(Pz,z,ht) = M(Pz,zt)
By lemma 2.9,we get Pz = zie Pz=z= Nz
Now to Prove Gz = z
Putx =x, and y = zin (iii)

w(M(Nx,,Tzt),@(M(Nx,,Gz,t)),w(MPx,,Hz, t)),}

M(Px,,Gz, kt) 24’{ w(M(Nx,,Px,,1)

w(M(z, Gz, t)), w(M (z,Gz, t)), w(M (z,Gz, t)),}
w(M(z,z,1)

M(z,Gz, ht) = ¢{

M(z, Gz, ht) = d{ w(M(z, Gz, t)) , ZD'(M(Z, Gz, t) ),w(M(z, Gz, t)), w(l)}

by using remark * Properties then we get
M(z,Bv, ht) = ¢>{M(Z, Bz,t),M(z,Bz,t) ,M(z,Bzt),1 }
M(z,Gz,ht) = M(z,Gz,t)
By lemma 2.9,we get Gz = zi.e Gz = z = Hz.
Hence, Pz = Gz = Nz = Hz = z.

Hence P, G,N and H have a Common Fixed Point.

Uniqueness: Suppose z, and z, are two common fixed point of P, G, N and H with z; # z, then from (3.2)

w(M(Nzl, Hz,, t)), w(M(NZl, Gz,, t)), w(M(PZl, Hz,, t)),}

M(Pz;,Gz,, ht) > ¢>{ @(M(Nz,, Pz,,0))
IS U

w(M(zy,2,,0),w(M(zy,2,,0), w(M(z,, 2, t)),}

M(z,,z,, ht) = ¢{ w(M(zy,2,,1))
1242,

M(z,,2,,ht) = p{w(M(z,,2,,0)) , @(M(z,,2,,8) ), w(M(z,,2,,8)), w(1)}
M(Zl, Z,, ht) > (,b{M(Zl, Zy, ), M(Zl, Zy, t)M(Zl, Zy, t), 1}
By definition of Implicit function, we get, M(z,, z,, ht) = ¢p{M (2, z,,t)}
By lemma 2.9, we get. z, = z,.
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